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Molecular dynamics simulations are reported for the thermodynamic properties of n-m Lennard-
Jones fluids, where n = 10 and 12, and m = 5 and 6. Results are reported for the thermal expansion
coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-
Thomson coefficient, and speed of sound at supercritical conditions covering a wide range of fluid
densities. The thermodynamic criteria for maxima/minima in the isochoric and isobaric heat capaci-
ties are identified and the simulation results are also compared with calculations from Lennard-Jones
equations of state. The Johnson et al. [Mol. Phys. 78, 591 (1993)] equation of state can be used to
reproduce all heat capacity phenomena reported [T. M. Yigzawe and R. J. Sadus, J. Chem. Phys.
138, 194502 (2013)] from molecular dynamics simulations for the 12-6 Lennard-Jones potential.
Significantly, these calculations and molecular dynamics results for other n-m Lennard-Jones po-
tentials support the existence of C, minima at supercritical conditions. The values of n and m also
have a significant influence on many other thermodynamic properties. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4824626]

. INTRODUCTION

Thermodynamic properties and phase behavior of flu-
ids are directly linked to the nature of intermolecular
interactions.! For example, theories of solid-liquid coexis-
tence are commonly based on the observation that the struc-
ture of dense fluids is dominated by steep repulsive interac-
tion between atoms or molecules.>™ The n-m Lennard-Jones
(LJ) potential with n = 12 and m = 6 is a common starting
point for both theoretical studies and molecular simulations.®
In general it is adequate for atomic fluids, whereas modelling
the behavior of molecules or monomers of polymer chains
usually requires a potential with a softer repulsive part.’

A simple soft core potential can be obtained by replacing
the n = 12 exponent in the 12-6 Lennard-Jones potential by
a smaller integer. It has been found that varying the value of
this exponent and, therefore the steepness of the main repul-
sive branch of the potential, significantly affects vapor-liquid
equilibria,’~'° the critical point,® and transport properties.' -3
It also has a profound effect on solid-liquid coexistence.'* In
contrast, the effect of varying n» on important thermodynamic
properties such as the thermal expansion coefficient (a,),
isothermal (B7) and adiabatic (8s) compressibilities, isobaric
(C,) and isochoric (Cy) heat capacities, Joule-Thomson coef-
ficient (uy7), and speed of sound (wp) have not been widely
studied. It is also rare to find an investigation of the role of m
on either thermodynamic or other properties.
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The fact that only a few thermodynamic properties can
be observed directly from conventional molecular simula-
tions partly explains the absence of data. In a microcanoni-
cal (NVE) ensemble simulation, which maintains a constant
number of particles (N), volume (V), and total energy (E),
the only directly observable thermodynamic quantities are the
potential energy (U), pressure (p), and temperature (7). The
calculation of other thermodynamic quantities requires the
use of fluctuation formulas or equations of state.'> ' Lustig!”
showed that it is possible to calculate all thermodynamic state
variables from key derivatives obtained directly from either
molecular dynamics (MD) or Monte Carlo (MC) simulations.
The method, which was subsequently refined by Meier and
Kabelac,!® is based on the exact exBrgssions for the thermody-
namic state variables inthe NVEPG en§emble, which main-
tains both constant linear momentum (£) and an additional
quantity (G) that is related to the initial position of the center
of mass. The NV E PG method has been successfully used
to obtain the thermodynamic properties of a Gaussian core
model fluid" and water.?’

A pure fluid is in a supercritical state at temperatures and
pressures above that of its critical point. Recently,?! a MD in-
vestigation of the thermodynamic properties of supercritical
12-6 Lennard-Jones fluids reported maxima and minima val-
ues for both Cy and C,. The existence of both minima and
maxima for Cy is well-documented experimentally,?>>* al-
though they are not a universal feature of fluids. Similarly,
many real fluids*> have maxima in C,. In contrast, the obser-
vation of minima in C, is new. To the best of our knowledge,
no previous simulation studies, theoretical calculations, or ex-
perimental work have reported C,, minima. The significance
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of this finding is that it provides an explanation for the termi-
nal C,, value at high temperatures. Instead of being an isolated
point, terminating a locus of heat capacity maxima, it is the
point of transition linking loci of both heat capacity minima
and maxima. The phenomenon is in some respect analogous
to the critical point and the loci obey the same power law re-
lationship as phase equilibria with an exponent of 8 = 0.32.
In this work, we make use of the NVE PG method to
determine o, Br, Bs, Cp, Cy, i1, and wy for n-m Lennard-
Jones fluids. Our aim is to demonstrate how the thermody-
namic properties vary with both n and m. We investigate the
thermodynamic basis of the maxima and minima in both C,
and Cy and whether these phenomena are also observed for
other n-m LJ fluids. The ability of LJ equations of state to pre-
dict thermodynamic maxima and minima is also determined.

Il. MD SIMULATIONS
A. Intermolecular potentials

The n-m Lennard-Jones potential is>

o= () GG -G o

where r is the interatomic separation, o is the atomic diameter
and ¢ is the well depth. We will consider potentials with
n = 10 and 12 for which m = 5 or 6. For a given value of
m, reducing the index n results in a wider attractive part
and weaker repulsive force. Figure 1 compares the energies
(Fig. 1(a)) and forces (Fig. 1(b)) of the 12-5 LJ and 10-6
LJ potentials relative to the 12-6 LJ potential. In both cases,
attractive interactions increase and repulsion decreases at all
interatomic separations. However, the changes observed for
the 12-5 LJ potential are much greater than for the 10-6 LJ
potential, particularly at larger separations. It should be noted
that attributing » and m contributions to repulsion and attrac-
tion, respectively is only a convenient approximation. The
continuous nature of the potential with respect to interatomic
separation means that it is impossible to isolate either purely
repulsive or purely attractive contributions. As n approaches
infinity, the leading coefficient of Eq. (1) approaches ¢ and
the n-m Lennard-Jones potential reaches the limiting case of
a “hard-sphere + attractive term” potential.®

B. The NVEPG method

The NV E PG ensemble simulations simply involve im-
plementing a conventional NV E P simulation while keeping
track of the volume derivatives of the intermolecular poten-
tial required for the evaluation of the thermodynamic quanti-
ties. The method has been discussed in detail in Refs. 17-21
and only a brief outline is given here. The fundamental equa-
tion of state for the system is defined by the entropy (S)
postulate,'” 13 i

ie.,
S(N,V,E,P,G)=kInQ(N,V,E, P,G), 2)

where Q(N, V, E, 13 é) is the phase-space volume and k is
the Boltzmann constant. The basic phase-space functions are
then introduced as an abbreviation representing the deriva-
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FIG. 1. Comparison of the (a) potential energy and (b) force as a function of
intermolecular simulation for the 12-5 LJ (green broken line) and 10-6 (red
line) LJ potentials relative to the 12-6 LJ potential. There are discontinuities
in the ratios because the values for the 12-6 LJ potential become zero.

tives of the phase-space volume with respect to the indepen-
dent thermodynamic state variables

1 8m+nQ

an T =P —
w dEmIVn

3)
where w is the phase-space density. A feature of the determi-
nation of the € terms is the evaluation of volume derivatives
of the potential energy

N-1 N n
a"u 1 kaku
= Aui I ——, 4
v ey

where the coefficients a,; are constructed using a recursion
relation. All thermodynamic state variables are then express-
ible in terms of the phase-space function. The formulas for
the thermodynamic state variables used in this work are sum-
marized in Refs. 18-21.
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C. Simulation details

The initial configuration for all simulations was
an imRerfect face centred cubic (fcc) lattice structure. The
NV E PG MD simulations were performed for a homogenous
fluid of 1000 particles interacting via the n-m LJ potential.
The normal conventions were used for the reduced density
(p* = po?), temperature (T* = kT/e), potential energy
(U* = UINe), pressure (p* = po3le), heat capacities
(Cpy =Cpy/k), compressibilities (B} g = Br.se/o?),
thermal expansion coefficient (¢} = ape/k), speed of sound
(w§ = wo/m/¢), where m is the mass of the particles, the
Joule-Thomson coefficient (1%, = usrk /o), and time step
(t* = [e/ma*]?7). All quantities quoted in this work are in
terms of these reduced quantities and the asterisk superscript
will be omitted in the rest of the paper, with the exception of
Egs. (11) and (12).

The equations of motion were integrated using a five-
value Gear predictor-corrector scheme®2° with T = 0.001.
For each state point, simulation trajectories were run for 10 x
109 time steps with 8 x 10° time steps used to equilibrate the
system. For the n-m LJ potentials, the cut-off radius was 6.5¢0
and conventional long-range corrections® were used for U and
p, whereas the long-range corrections for the volume deriva-
tives were calculated from the formulas reported by Meier and
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FIG. 2. Comparison of (a) Cy and (b) C, simulation data for the 12-6
LJ potential at 7 = 1.6 (black circle, @) and 7 = 3.0 (blue square, H)
with calculations using the Johnson (solid lines) and Mecke (broken lines)
12-6 LJ EoS.
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Kabalec.'® In Fig. 2 and Figs. 611 error bars are not shown
because, in most cases, the calculated statistical uncertainties
of the data points are similar to the size of the symbols. Simu-
lations were performed for p = 0.1-1.0 and various supercrit-
ical temperatures. Most of the data in the figures are for either
T=1.60or T=23.0. T=1.6is above the critical temperature>’
(T = 1.312) of the 12-6 LJ fluid, whereas T = 3.0 is a su-
percritical temperature for all the n-m LJ potentials studied
here and as such it is a useful common temperature for the
comparison between the potentials.

lll. CRITERIA FOR HEAT CAPACITY MAXIMA,
MINIMA, AND EXTREMA

For a given isotherm at supercritical temperatures, max-
ima/minima in either Cy or C, correspond to*!

<8Cp_v> —0
oV Jror.r<r,

BZCP,V
(),
T>T.,T<Tg

where maxima and minima are observed when the second
derivative is <0 and >0, respectively. The maxima/minima
in the supercritical phase occurs at a temperature (7Tyy) greater
than the critical temperature (7.) but less than the tempera-
ture extreme (7g) at which maxima and minima coincide. The
temperature extreme occurs at a point of inflection character-

ized by?!

aC, v _0

vV S,

azc_”’v =0 (6)
av2 Joi_q, ’

3C

()., o

V3 Jr_r,

Using the thermodynamic relationship,?® 2’

aC 92
) =1(%) . )
oV J; Tz ),
means that the criteria for observing maxima and minima in
Cy are
32
P
aT? )y,

83p
—_— 0
(3T28V> 7

To evaluate the criteria for maxima and minima in
C,, we make use of the following standard thermodynamic
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relationships:?%-2

, ©))

which transform Eq. (5) to
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When o, = 0, it is apparent from Eq. (9) that 87 = 0 which
means that Egs. (8) and (10) will be identical. A well-known
example of o, = 0 is liquid water at its maximum density
at a temperature of approximately 4 °C, which coincides with
Cy = C,. These circumstances do not occur at supercritical
conditions.

The heat capacities and criteria for maxima/minima can
be obtained by evaluating the necessary derivatives from an
equation(s) of state (EoS). Several 12-6 LJ EoS have been
proposed, some of which are compared in Ref. 30. Nico-
las et al.’! proposed an EoS based on molecular simulation
data, which was subsequently updated by Johnson et al.3*> The
Johnson et al.*> EoS for a 12-6 LJ fluid is

8 6
p* _ p*T* + Zaip*(iﬂ) + 6*30*2 Zb[p*(2i+l)’ (11)
i=1 i=1
where the standard definitions for the reduced temperature,
pressure, and density are used. The a and b parameters are
empirical terms obtained from fitting®' the equation of state
to a wide range of simulation data. Mecke et al.** proposed
that the Helmholtz function (A), and hence the EoS for the
12-6 LJ fluid could be obtained from

12)

£ =—0.1617(p*/p})[0.689 + 0.311(T*/ T)***™]~!

In common with the Johnson et al.32 approach the m, n, p, q,
and ¢ terms were obtained from optimizing agreement with
molecular simulation data. Hereafter, we will refer to the
Johnson et al.*?> and Mecke et al.*® EoS simply as the Johnson
and Mecke EoS, respectively.

IV. RESULTS AND DISCUSSION
A. Observation of heat capacity maxima and minima

Yigzawe and Sadus®' reported simulation data showing
minima in C, for the 12-6 LJ potential. This behavior was un-
expected because it had not been observed previously from
theory, molecular simulation or experiment. The absence of
experimental data may indicate that it is an artefact of the
12-6 Lennard-Jones potential. However, the well-documented
ability of the 12-6 LJ potential to at least qualitatively repro-
duce many other experimentally observed phenomena of sim-
ple fluids suggests that this explanation is unlikely. Alterna-
tively, the absence of experimental data could be attributed
to the fact that the minimum is very shallow in comparison
to the very large C, maximum and it occurs at densities and
pressures that are outside of the normal range of experimental
measurements. In view of this, it is of interest to determine
whether a 12-6 LJ EoS can reproduce the phenomenon.

The definition of the maxima/minima criteria (Egs. (8)
and (10)) has some interesting consequences for both the
behavior of real fluids and the accuracy of EoS prediction.
Many EoS, most notably the van der Waals equation and other
widely used “hard sphere + attractive term” EoS* cannot
predict maxima/minima in Cy because criteria (8) are satis-
fied at all densities, temperatures, and pressures. However, the
same EoS that fails to predict the Cy maxima/minima could
predict these phenomena for C,, because criteria (10) contain
additional terms that are generally not invariant for the EoS.
These considerations also apply to real fluids, which explain
the diversity of phenomena observed experimentally. For ex-
ample, a real fluid with a Cy maximum is likely to have a C,
maximum, whereas a C, maximum does not guarantee a Cy
maximum.

We tested both the Johnson (Eq. (11)) and Mecke
(Eq. (12)) EoS. Figure 2(a) compares the Cy results ob-
tained from the two EoS with simulation data at temper-
atures of 7 = 1.6 and 3.0. There is very good agree-
ment with simulation data for both EoS at 7 = 3.0. At
the lower temperature of 7 = 1.6, the simulation data for
Cy display both a maximum and minimum. The Johnson
EoS calculations faithfully reproduce this behavior and the
overall agreement is very good at all densities. In con-
trast, the Mecke EoS predicts neither the maximum nor
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FIG. 3. Close-up of the C,, curve as a function of density showing the minima
(@) predicted by the Johnson EoS at T'= 2, 2.4, and 2.8.

minimum and the agreement is poor at all densities. The
corresponding results for C, are illustrated in Fig. 2(b).
At T = 3.0, the results for the two EoS are almost indistin-
guishable. At T = 1.6, the simulation data show a pronounced
maximum at moderate densities and a very shallow minimum
at high densities. Both EoS predict a C,, maximum. The mag-
nitude of C, predicted by the Mecke EoS is closer to the sim-
ulation data than the Johnson EoS. Although it is difficult to
resolve on the scale given in Fig. 2(b), the Johnson EoS also
has a minimum in C, whereas the Mecke EoS does not.

The apparently inconsistent results for the Mecke EoS,
that is its failure to predict C, maxima/minima while display-
ing a C, maximum can be explained in terms of the thermody-
namic criteria for these phenomena (Egs. (8) and (10)). The
absence of Cy maxima/minima does not preclude C, max-
ima/minima because of the additional terms (Eq. (10)) that
are involved for such phenomena.

Yigzawe and Sadus®' noted that it is difficult to accu-
rately identify C, minima because there is considerable scat-
ter in the simulation data and, unlike the C, maxima, the min-
ima is very shallow. EoS calculations are potentially helpful
because the issue of data scatter does not arise. The Mecke
EoS qualitatively reproduced the maxima in C, but C, min-
ima could not be found irrespective of temperature or den-
sity. In contrast, the Johnson EoS reproduced all the phenom-
ena observed in the simulations, including the C,, minima (see
Fig. 3). The inability of the Mecke EoS to predict the C, min-
ima compared with successful calculations obtained for the
Johnson EoS probably reflects the differences in parameteri-
zation. In particular, Mecke et al. 3 based their parameterisa-
tion on the Carnahan-Starling® hard-sphere term. The criteria
for the C, maxima/minima would preclude these phenomena
from being observed for many EoS. This is particularly the
case for EoS based on hard-sphere approximations.

The maxima and minima predicted by the Johnson EoS
are compared with simulation data®' in Fig. 4(a), which also
shows the regions of vapor-liquid*® and solid-liquid®’ coex-
istence for the 12-6 LJ fluid. There is reasonable agreement
between EoS calculations and simulation data for C,, al-
though the calculated extreme point (7g = 1.696, pg = 0.389,

J. Chem. Phys. 139, 154503 (2013)
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FIG. 4. (a) Comparison of simulation data (Ref. 21) for temperature-density
behavior of the supercritical maxima (open symbols) and minima (closed
symbols) of C,(0.4), Cv(A, A) for the 12-6 Lennard-Jones fluid with cal-
culations obtained from the Johnson EoS (blue solid lines). The vapor-liquid
(—, Ref. 37) and solid-liquid (—, Ref. 36) coexistence curves are also illus-
trated. The red lines linking the maxima and minima heat capacity data were
obtained by fitting the data using the phase coexistence power relationship
with an exponent of 8 = 0.32. The vapor-liquid critical point (@, CP), and
temperature extremes (red circle, @, TE) for both Cy and C,, are identified.
(b) A close-up view of the Cy data.

pe = 0.436) is higher than obtained from simulation?!
(Tg = 1.667, pg = 0.382, pg = 0.384). The agreement be-
tween simulation data and EoS calculations for C, is poor,
with the calculated extreme point (75 = 6.234, pg = 0.557,
pe = 7.501) occurring at a much higher temperature than
obtained from simulation?! (Tg = 2.905, pg = 0.539,
pe = 2.550). However, it should be emphasised that the im-
portant aspect of this comparison is that it independently con-
firms both the existence of C,, minima and the transition be-
tween C, minima and maxima obtained from simulations.
The comparison between simulation and calculations for
Cy is shown in more detail in Fig. 4(b). One reason for the
discrepancy between the simulation data and calculations is
that the simulation data obey the non-classical value for the
power law exponent (8 = 0.32), whereas the EoS data fol-
low the classical value (8 = 0.5) common to conventional
(mean field) equations of state. This suggests that the agree-
ment could be improved by adding cross-over®® features into
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FIG. 5. Comparison of the various contributions to Eq. (10) obtained from
the Johnson EoS in the vicinity of a C, maximum (T = 2, p = 0.325).
Illustrated are values of (i) «), (black line), (ii) (32 p/o V2)7(blue line),
(iii) (32p/8T?)y (red line), and (iv) (3>p/dVdT) (green line). The calcu-
lations were performed for a constant value of p = 0.325, corresponding to
density of the C, maximum.

the Johnson 12-6 LJ EoS. Figure 4(b) also shows that the
EoS calculations extend into the two-phase vapor-liquid re-
gion. Phenomena in this region are either metastable or un-
stable and it is not surprising that some pressures and heat
capacities calculated there are negative. The EoS C, data (not
illustrated) extend into both the two-phase liquid-vapor and
solid-liquid regions.

It is of interest to compare the relative contributions of
the various thermodynamic quantities used in the C, max-
ima/minima criteria (Eq. (10)). The various quantities ob-
tained from the Johnson EoS in the vicinity of a C, maxi-
mum are compared in Fig. 5. It is apparent that both &, and
(32p/3V?)r are much more temperature-dependent than the
remaining terms and as such have the most important influ-
ence on the location of the C, maximum. The value of o),
diverges in the vicinity of the critical temperature (7'= 1.312)
whereas (8% p/3V?)y becomes zero.

B. Isochoric and isobaric heat capacities

Simulation results for Cy and C, for the 12-6, 10-6, and
12-5 LJ potentials are illustrated in Figure 6 and a comparison
is given for the 12-6 fluid obtained from the Mecke and John-
son EoS. It is noteworthy that at 7' = 3.0 neither the value of
n nor m significantly affects Cy, which appears independent
of both exponents at all densities (Fig. 6(a)). This probably
reflects the fact that, for all the LJ potentials, 7= 3.0 is above
the Tg value for Cy. In contrast, C, is sensitive to both n and
m (Fig. 6(b)). Reducing the value of n from 12 to 10 results in
a noticeable increase in the C, maximum; however, the most
significant increase occurs when m is reduced from 6 to 5.
The scatter in the simulation data makes it difficult to draw
definite conclusion regarding the effect on the minima.

Freasier et al.’® interpreted the occurrence of Cy minima
and maxima in terms of the interplay between molecular ag-
gregation, caging, and soft-core repulsion. They attributed the
Cy maxima at moderate densities as a transition between sim-

J. Chem. Phys. 139, 154503 (2013)
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FIG. 6. Molecular simulation data for (a) Cy and (b) C, obtained for the
12-6 (black circle, @), 10-6 (red square, W), and 12-5 (green triangle, ¥) LJ
potentials at 7 = 3.0. Calculations for the Johnson (solid lines) and Mecke
(broken lines) 12-6 LJ EoS are also illustrated.

ple aggregation and caging effects whereas the Cy minimum
was attributed to the increasing influence of soft-core pene-
tration on the caged particles with increasing density. The Cy
maximum requires the intermolecular potential to have an at-
tractive well and it is not observed in purely repulsive sys-
tems. Particles interacting without some soft repulsion do not
display a Cy minimum. Our results appear consistent with this
interpretation. Based on this interpretation, the absence of Cy
minima in Fig. 6(a) can be attributed to the effect of temper-
ature dominating any soft-core repulsion. Freasier et al.’® did
not consider the influences on C, but the widening of the po-
tential well when n = 5 appears to be directly linked to an
increase in C, maxima.

C. Adiabatic and isothermal compressibilities

Values of Bs and B are illustrated in Fig. 7. At high den-
sities (p > 0.5) the results for B for the various potentials are
almost indistinguishable from each other. Reducing n from
12 to 10 results in a modest increase in Bg at lower densities,
however a greater change is observed when m is reduced from
6 to 5. Nonetheless, the changes are relatively small. The same
general trends are observed for 87; however, the magnitude of
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FIG. 7. Molecular simulation data for (a) Bs, (b) 87, and (c) B /Bs obtained
for the 12-6 (black circle, @), 10-6 (red square, W), and 12-5 (green triangle,
V) LJ potentials at 7 = 3.0. Calculations for the Johnson (solid lines) and
Mecke (broken lines) 12-6 LJ EoS are also illustrated.

the changes is considerably greater. The value of C,, is related
to Bs and By via the following thermodynamic relationship:?’

C,=Cy—. 13
P V,3s (13)

The Br/Bs ratio as a function of density is illustrated in
Fig. 7(c). In this example, the S7/Bs ratio exhibits a maxi-
mum, which contributes to the C,, maximum. If Cy has a max-
imum, the existence of a maximum in the S7/8s ratio will
magnify the C, maximum, which partly explains the much
larger maximum observed for C,, compared with Cy. The data
in Fig. 7(c) also indicate that the maximum for the 8;/8 ratio
and therefore the C, maximum is much larger for the 12-5 LJ
potential than either the 10-6 LJ or 12-6 LJ potentials.

J. Chem. Phys. 139, 154503 (2013)
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FIG. 8. Molecular simulation data for c, obtained for the 12-6 (black cir-
cle, @), 10-6 (red square, W), and 12-5 (green triangle, ¥) LJ potentials at
T = 3.0. Calculations for the Johnson (solid lines) and Mecke (broken lines)
12-6 LJ EoS are also illustrated.

D. Thermal expansion coefficient

In common with Cy and C, «, exhibits maxima in
the supercritical phase. This can be attributed to its con-
nection to heat capacities via the following thermodynamic
relationship:?’

L, Cp (0p
Olp—ﬂsc—v <8_T>V (14)

Simulation «,, data for the various potentials are illustrated in
Fig. 8, which shows a maximum value in all cases. The trends
are consistent with those observed for other thermodynamic
properties, namely that reducing either the value of n or m
increases the maximum but changing m has a much greater
impact.

E. Joule-Thomson coefficient

Values of wyr for the LJ potentials are illustrated in
Fig. 9 as functions of density. At low densities (p < 0.5),

1.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Molecular simulation data for x 1 obtained for the 12-6 (black cir-
cle, @), 10-6 (red square, W), and 12-5 (green triangle, ¥) LJ potentials at
T = 3.0. Calculations for the Johnson (solid lines) and Mecke (broken lines)
12-6 LJ EoS are also illustrated.
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Wyt is sensitive to both the value of n and m, with m having
the greatest impact. The pyr values for the LJ fluid decrease
with increasing density along the isotherm, attaining a nega-
tive value at high densities. This means that there is an inver-
sion curve (i.e., locus of pyr = 0) for the LJ fluid. To obtain
the inversion curve, we first calculated the density at which
wr is zero for each of the isotherms by finding the root of a
polynomial fitted to simulation results of yjt in the vicinity of
the density where the change of sign occurs. We then deter-
mined the corresponding value of the pressure at that density
for each of the isotherms. This was achieved by finding the
best fit of a polynomial for the simulated pressures and us-
ing it to calculate the pressure at each of the densities where
pyr = 0.

The inversion curve for the various potentials is illus-
trated in Fig. 10. Fig. 10(a) indicates that for a given den-
sity, either reducing n or m will result in a substantial increase
in the inversion temperature, with m having the greatest in-
fluence. The effect on pressure is less dramatic (Fig. 10(b)),
with the inversion curve being extended slightly to higher
pressures.

10 T T T T
0.6 0.8 1.0 12 14 1.6

p

FIG. 10. Molecular simulation data for the (a) temperature-density and
(b) temperature-pressure behavior of the Joule-Thomson inversion curve ob-
tained for the 12-6 (black circle, @), 10-6 (red square, W), and 12-5 (green
triangle, ¥) LJ potentials at 7= 3.0. Calculations for the Johnson (solid lines)
and Mecke (broken lines) 12-6 LJ EoS are also illustrated.

J. Chem. Phys. 139, 154503 (2013)

FIG. 11. Molecular simulation data for w obtained for the 12-6 (black cir-
cle, @), 10-6 (red square, W), and 12-5 (green triangle, ¥) LJ potentials at
T = 3.0. Calculations for the Johnson (solid lines) and Mecke (broken lines)
12-6 LJ EoS are also illustrated.

F. Speed of sound

The zero frequency speed of sound as a function of tem-
perature at different constant densities is illustrated in Fig. 11.
It is apparent from the comparison given in Fig. 11, that at
p > 0.2, both the 10-5 and 12-5 LJ potentials result in re-
duced values of wy However, the reduction is relatively small
compared with the effect of changing the exponent for other
properties. This is consistent with the dependence of wy on
Bs. via the thermodynamic relationship®®

Vv

wy = ME (15)

where M is the total mass of the system. The influence of n and
m on Bg (Fig. 7) is relatively small, which is also reflected in
the values of wy.

In Fig. 2 and Figs. 611 comparisons are given with cal-
culations from both the Johnson and Mecke EoS. It is appar-
ent from these comparisons that both EoS generally yields
good agreement with the 12-6 LJ simulation data. This is
to be expected as both equations were fitted to simulation
data. However, for reasons discussed above, the notable ex-
ception is the failure of the Mecke EoS to predict the Cy max-
ima/minima (Fig. 2).

V. CONCLUSIONS

The thermodynamic criteria for maxima/minima in the
isochoric and isobaric heat capacities have been identified.
The Johnson EoS can be used to qualitatively reproduce all
heat capacity phenomena obtained from MD simulations for
the 12-6 LJ potential. Significantly, these calculations support
the existence of C, minima at supercritical conditions. In con-
trast the Mecke EoS fails to predict Cy minima and although
C, maxima are predicted, C, minima are not. This can be
partly explained by the use of a hard-sphere term in the Mecke
EoS. Many “hard sphere + attractive term” EoS are unlikely
to predict the full range of heat capacity behavior because key
thermodynamic derivatives are invariant under all conditions.
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The existence of C, minima from both MD simulation data
and Johnson EoS calculations suggest that it is worthwhile
to attempt to identify this behavior from experiments on real
fluids.

The MD results for the 12-6, 12-5, 10-6 LJ potentials in-
dicate that thermodynamic properties such as «,,, 87, C,, and
Wy are very sensitive to a change in the value of n from 12
to 6 and m from 6 to 5, with the value of the m exponent
having a particularly noticeable impact. In comparison with
the 12-6 LJ potential, considerably larger C, and Cy maxima
are observed for both the 12-5 and 12-10 LJ potentials. Re-
ducing either n or m significantly affects the Joule-Thomson
inversion curve by increasing the inversion temperature and
pressure. In contrast, varying the potential’s exponents has a
relatively small effect on both wy and Ss.
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